多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,由于其最先进的性能,空间 - 周期性图神经网络(STGNN)已成为越来越流行的MTS预测方法。但是,随着绩效的有限改善,最近的工作变得越来越复杂。这种现象激发了我们探索MTS预测和设计模型的关键因素,该模型与STGNN一样强大,但更简洁,效率更高。在本文中,我们将样品在空间和时间维度中的不可区分性确定为关键瓶颈,并通过连接空间和时间身份信息(STID)提出了一个简单而有效的MTS预测基线,该信息可同时实现最佳性能和效率基于简单的多层感知器(MLP)。这些结果表明,只要它们解决样品的不可区分性,而无需限于STGNN,我们就可以设计高效有效的模型。
translated by 谷歌翻译
为了成功推荐(SR)成功,最近的作品着重于设计有效的顺序编码器,融合侧面信息以及挖掘额外的积极的自我实施信号。在每个时间步骤中对负面项目进行采样的策略较少探索。由于用户在培训过程中的兴趣和模型更新的动态,因此考虑用户的非相互作用项目的随机抽样项目作为负面的项目可能是不明智的。结果,该模型将不准确地了解用户对项目的偏好。识别信息性负面因素是具有挑战性的,因为内容的负面项目与动态变化的兴趣和模型参数相关(并且抽样过程也应该是有效的)。为此,我们建议为SR(Genni)生成负样本(项目)。根据当前SR模型对项目的学习用户偏好,在每个时间步骤中都采样了负项目。提出了有效的实施,以进一步加速生成过程,使其可扩展到大规模推荐任务。在四个公共数据集上进行的广泛实验验证了为SR提供高质量的负样本的重要性,并证明了Genni的有效性和效率。
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
沟通压缩是现代分布式学习系统的至关重要技术,可以减轻其在较慢的网络上的交流瓶颈。尽管最近对数据并行式训练的梯度压缩进行了深入的研究,但压缩了通过管道并行性训练的模型的激活仍然是一个空旷的问题。在本文中,我们提出了AC-SGD,这是一种新型的激活压缩算法,用于在慢速网络上进行通信有效的管道并行性训练。 AC-SGD与以前的激活压缩方面的努力不同,而不是直接压缩激活值,而是压缩激活的变化。这使我们能够首次向我们的知识表明,仍然可以实现$ o(1/\ sqrt {t})$收敛速率,即激活压缩的非convex目标,而无需对梯度做出假设无偏见对于具有非线性激活功能的深度学习模型不符合。然后,我们证明AC-SGD可以有效地优化和实施,而无需额外的端到端运行时开销。我们将AC-SGD评估为微调语言具有高达15亿个参数的模型,将激活压缩至2-4位。AC-SGD在较慢的网络中可提供高达4.3倍的端到端速度,而无需牺牲模型质量。此外,我们还表明,AC-SGD可以与最先进的梯度压缩算法结合使用,以启用“端到端通信压缩:机器之间的所有通信,包括模型梯度,远期激活和后退梯度压缩为较低的精度。这提供了高达4.9倍的端到端加速,而无需牺牲模型质量。
translated by 谷歌翻译
至于场景图的生成(SGG),由于众包标签,数据集中的粗谓词混合了,并且长尾问题也很明显。鉴于这种棘手的情况,许多现有的SGG方法在一个阶段的混合颗粒性谓词的监督下平均处理谓词,并在一个阶段学习模型,从而导致相对粗糙的预测。为了减轻次优的混合粒度注释和长尾效应问题的负面影响,本文提出了一种新型的层次记忆学习(HML)框架,以从简单到复杂的模型学习该模型,这与人类类似于人类的模型。分层记忆学习过程。在粗糙和细谓词的自主分区之后,该模型首先在粗谓词上训练,然后学习细谓词。为了实现这种层次学习模式,本文首次使用新概念重建(CR)和模型重建(MR)约束来制定HML框架。值得注意的是,HML框架可以作为改善各种SGG模型的一种一般优化策略,并且可以在SGG基准(即视觉基因组)上实现显着改进。
translated by 谷歌翻译
基于深度学习的模型占主导地位的生产推荐系统的当前景观。此外,近年来目睹了模型规模的指数增长 - 从谷歌的2016年模型,最新的Facebook的型号有10亿个参数,具有12万亿参数。型号容量的每次跳跃都有显着的质量增强,这使我们相信100万亿参数的时代即将来临。然而,即使在工业规模数据中心内,这些模型的培训也在挑战。这种困难是从训练计算的惊人的异质性继承 - 模型的嵌入层可以包括总模型尺寸的99.99%,这是极其内存密集的;虽然其余的神经网络越来越多地计算密集型。为支持培训此类巨大模式,迫切需要有效的分布式培训系统。在本文中,我们通过仔细共同设计优化算法和分布式系统架构来解决这一挑战。具体而言,为了确保培训效率和训练精度,我们设计一种新型混合训练算法,其中嵌入层和密集的神经网络由不同的同步机制处理;然后,我们构建一个名为Persia的系统(短暂的并行推荐培训系统,其中包含混合加速),以支持这种混合培训算法。理论上的示范和实证研究均达到100万亿参数,以证明了波斯的系统设计和实施。我们将Pensia公开使用(在https://github.com/persiamml/persia),以便任何人都能够以100万亿参数的规模轻松培训推荐模型。
translated by 谷歌翻译
用于异质图嵌入的图形神经网络是通过探索异质图的异质性和语义来将节点投射到低维空间中。但是,一方面,大多数现有的异质图嵌入方法要么不足以对特定语义下的局部结构进行建模,要么在汇总信息时忽略异质性。另一方面,来自多种语义的表示形式未全面整合以获得多功能节点嵌入。为了解决该问题,我们通过引入多视图表示学习的概念,提出了一个具有多视图表示学习(名为MV-HETGNN)的异质图神经网络(称为MV-HETGNN)。所提出的模型由节点特征转换,特定于视图的自我图编码和自动多视图融合,以彻底学习复杂的结构和语义信息,以生成全面的节点表示。在三个现实世界的异质图数据集上进行的广泛实验表明,所提出的MV-HETGNN模型始终优于各种下游任务中所有最新的GNN基准,例如节点分类,节点群集和链接预测。
translated by 谷歌翻译